Pegmont Mines Limited

ACN 003 331 682

Corporate Office
65 Hume Street
Crows Nest NSW 2065
Postal address
PO Box 849
Crows Nest NSW 1585
Telephone: 02 8437 3591

Facsimile: 02 8437 3599

20 October 2008

The Manager National Stock Exchange of Australia 384 Hunter Street Newcastle NSW 2300

Quarterly Activity Report to 30 September 2008

We submit the following report for Pegmont Mines Limited for the three months to 30 September 2008.

1. Summary

- Realised share trading losses before tax and GST adjustments were \$55,776 for the quarter compared to a profit of \$2,228,225 for September'07. The total loss for nine months amounted to \$375,784. Interest received during the quarter was \$24,150 and \$112,097 for the nine months. Other income was \$20,090 for the quarter and \$127,007 for the nine months.
- The cash position was \$743,483 at 30 September 2008, which together with listed shares at market value \$5,310,896 resulted in liquid assets at market of \$6,054,379 or 11.9c/share. The company did not have any borrowings.
- Cloncurry Metals Limited (CLU) holds an option to acquire the Pegmont tenements. This option expires on 28 February 2009 unless extended.
 - CLU has signed a Memorandum of Understanding with BHP Billiton that could allow for an early development of the Pegmont deposit on the premise of delivering mined ore to the Cannington Plant for processing. However before any decision can be made, BHP Billiton intends to conduct a due diligence program which may include infill drilling and metallurgical test work, and for CLU to exercise its option.

 CLU has indicated its desire for the option period to be extended beyond 28 February 2009. Discussions between CLU and the Company have commenced.

2. Exploration Activity

2.1 Pegmont Drilling Program

Since June, CLU have completed 32 holes totalling 7,319.3 metres, much of this work was extensional and infill drilling. CLU has reported that: "Many intersections of mineralisation were encountered outside the known mineralised envelope showing potential for significant upside at Pegmont"

A schedule of drill holes together with a location map is attached.

2.1 New Hope

The Company has given "Notice to Acquire" ML 2487 (New Hope). Since the ML is due for renewal, the option exercise is now awaiting the grant of a new ML. Discussions with the Mining Registrar were held on site and in Mount Isa and it appears the Mining Lease will be renewed for a period of 10 years.

Check assaying of the high grade intersection of 5m@ 103 g/t Au from 45m in drill Hole NHP013 has confirmed previously announced results and of the fine grain nature of contained gold. There was no drilling undertaken during the quarter as field efforts were directed towards regional exploration.

2.2 New Hope Metallurgy

Riffled samples of RC chips from drill hole NHP013 35-36 to 59-0, NHP 0148-9 to 11-12 and NHP 015 93-94 to 95-96 have been stored for possible metallurgical work using the EcoGold process. Preliminary results indicate a gold recovery of 93% and cobalt recovery ranging between 40-70%.

2.4 EPM 14491 Selwyn Blocks

Regional work undertaken by the company in EPM14491 included reconnaissance rock chip sampling of geophysical anomaly targets SC1 and SC4 was undertaken to check a dolerite body containing gossans, cross-cutting quartz-ironstone breccia veins and quartz-tourmaline pegmatites. A few anomalous gold values were recorded.

However, Anomaly Sc-7 in the Mort River area has provided elevated gold values ranging from 0.18 to 2.95 g/t over 200m of strike associated with a sporadically outcropping dolerite/amphibolite unit. Mineralisation appears to occur in conformable gossans and in cross-cutting quartz-ironstone fault breccias. Since Anomaly Sc-7 is located some 7 km east of the New Hope gold deposit, work is being expedited to

advance this prospect to "drill target" stage. A follow up program of costeans will be undertaken prior to drill test.

3. Investment Activities

Realised share trading losses were \$55,776 for the quarter, resulting in a nine months loss of \$375,784.

	Inves	stment Activity	y Summary	
Shares Traded	Sept Quarter 2008 <u>\$000</u>	Nine Months to Sept 2008 \$000	Nine Months to Sept 2007 \$000	Estimate Year 2008 \$000
Proceeds	635	6,205	30,969	7,600
Cost	691	6,581	23,242	8,000
Profits	59	813	8,137	900
Losses	(115)	(1,189)	<u>(410)</u>	(1,300)
Net realised (Loss)	<u>(56)</u>	(376)	<u>7,727</u>	<u>(400)</u>
Net Provision for los	s (2,144)	(4,491)	-	(4,491)

Trading losses to date arise from liquidating speculative positions in other exploration companies in favour of those entities already in production and producing positive cash flow.

We have set a goal to recover realised losses for a break-even result for the year, although additional losses may result from rebalancing the portfolio, to create extra liquidity and to focus on established cash generating opportunities. Difficult share market conditions are likely to persist for some time to come.

4. Corporate Liquidity

The company's cash position at 30 June 2008 was \$743,483 (1.5c/sh). This position represents 12.3 % of total cash and listed share assets at market value.

5. Income and Expenditure (cash basis)

Income Received	Sept Quarter	Nine Months to Sept 2008	Budget 2008
	\$	\$	\$
Interest	24,150	112,097	127,000
Net (Loss) on sale of shares	(55,776)	(375,784)	(375,784)
Other Income	20,090	127,007	167,000
	<u>(11,536)</u>	(136,680)	(81,784)

Exploration Expenditure

Pegmont deposit – geology & general	1,010	133,888	137,000
– metallurgy	2,400	34,048	35,000
Pegmont regional	142,986	192,488	320,000
New Hope exploration & metallurgy	28,735	208,249	220,000
Other	1,447	<u>11,800</u>	20,000
CLU recovery Net exploration expenditure	176,578	580,473	732,000
	(600)	(317,036)	(320,000)
	175,978	263,437	412,000
Administration Directors'& Secretary Fees	45,070	151,531	170,000
	96,250	316,538	420,000
Share Investments Company Income Tax	726,083	1,849,090	1,850,000
	(219,750)	582,250	<u>582,000</u>
	647,653	2,899,409	3,022,000
Net Cash Surplus/ (Deficit) Add opening cash balances. Closing Cash Balances.	(835,167)	(3,299,526)	(3,515,784)
	1,578,650	<u>4,043,009</u>	<u>4,043,009</u>
	743,483	<u>743,483</u>	<u>527,225</u>

In summary, share trading for profit was extremely difficult because of market volatility caused by the banking and sub prime debt crisis in the US. Commodity prices have slumped recently which means that mining profits will be under pressure. However, mining service providers should continue to do well and as an investment sector they will continue to attract our attention.

Since our discovery of high grade gold-cobalt mineralisation at New Hope (ML 2487) on the Mt Cobalt shear zone, a re-evaluation of the potential of EPM 14491 (Selwyn sector) was commenced with regional rock chip sampling for target generation. Encouraging drill results by ourselves and CLU at New Hope and Pegmont respectively should result in an active 2009 drill year testing a variety of targets for gold-cobalt and BHT lead-zinc targets in the Selwyn Sector and IOCG targets in the Pegmont Sector and progress towards mine feasibility studies.

Yours faithfully,

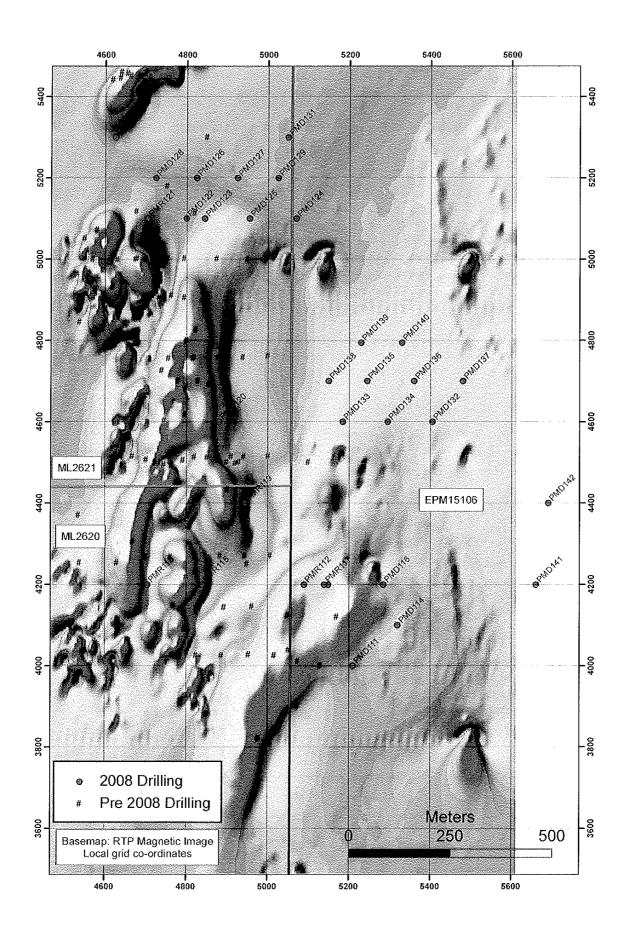
M. A. Mayger

Managing Director

In Markey

CLONCURRY METALS LIMITED - QUARTERLY REPORT FOR SEPTEMBER 2008

ATTACHMENT 1 – 2008 Pegmont Drilling Summary


		rd 3g/t Zn and .46%	g/t Ag		ı/t Ag	g/t Ag	ı/t Ag	1/t Ag	3.7g/t		,	t Ag (4m					26m					
	MINEKALISED IN ERSECTIONS	0.9m from 154.75m at 0.86% Pb, 1.14% Zn and 3g/t Ag; 2.35m from 158.35m at 4.57% Pb, 2.86% Zn and 12.1g/t Ag; 2.55m from 168.35m at 6.0% Pb, 6.46% Zn and 8.4g/t Ag	6m from 37m at 6.66% Pb, 4.07% Zn and 8.8g/t Ag	No intersection	4m from 124m at 0.7% Pb, 1.25% Zn and 3.2g/t Ag (4m sample)	5m from 33m at 4.13% Pb, 1.66% Zn and 1.2g/t Ag	2m from 58m at 0.93% Pb, 2.79% Zn and 1.4g/t Ag	1m from 71m at 1,42% Pb, 0.62% Zn and 3.2g/t Ag	10m from 42m at 9.16% Pb, 4.51% Zn and 13.7g/t Ag	No intersection	No intersection	4m from 58m at 1.8% Pb, 0.07% Zn and 7.3g/t Ag (4m sample)	2m from 149m	7m from 138m;	9m from 215m and 2m from 237m	2m from 129m	2m from 156m; 1m from 168m and 2m from 226m	12m from 145m	2m from 124m	2m from 155m and 2m from 194m	No intersection	1.7m from 193.8m
TOTAL	DEPTH (m)	306.1	80	120	390.4	100	302.8	180	120	126	142.3	150	192	231	272.3	230.7	242.5	212.9	170.9	264.1	120	304 9
Diamond	Drilling (m)	156.1	0	0	216.4	0	152.8	0	0	0	82.3	0	102.1	111	153	129.1	141	99.1	81.2	144	0	164
RC Pre-	Collar (m)	150	80	120	174	100	150	180	120	126	90	150	6.68	120	119.3	101.6	101.5	113.8	89.7	120.1	120	1409
	百	09-	9-	09-	-70	09-	-65	-65	^{ထု}	09-	09-	09-	QQ	-67	09	09-	09-	09-	09	-70	09-	A A
Cliad	AZIMUTH	270	270	06	270	270	270	270	270	270	270	270	270	270	270	270	270	270	270	270	270	070
2010	NORTH	4000	4200	4200	4100	4200	4200	4200	4200	4400	4600	5100	5100	5100	5100	5100	5200	5200	5200	5200	5300	0000
200	EAST	5210	5090	5149	5320	4840	5285	5140	4705	4945	4880	4705	4800	4845	5070	4955	4825	4925	4725	5025	4625	0000
	HOLE ID	PMD111	DMR112	DMR113	DMD111	PMB115	PMD116	DMB117	PMR118	PMR119	PMD120	DMB121	DM 1000	TWD 122	PMD124	PMD125	PMD126	PMD127	PMD128	PMD129	PMR130	3

S

CLONCURRY METALS LIMITED - QUARTERLY REPORT FOR SEPTEMBER 2008

	nta		E STATE OF THE STA									шол			
The state of the s	MINERALISED INTERSECTIONS	2m from 185m	5m from 115m	0.8m from 137m	4.5m from 161.5m	2 2m from 402m and 4m from 200 5m	S.Z. ITOIN 195111 AND THE HOLE 200, OH	No intersection	5m from 153m	No intersection	2.5m from 224.5m	6.5m from 270m; 2.7m from 324m, and 1.7m from 330m.	3.3m from 375.5m and 0.8m from 385.1m		
14101	DEPTH (m)	222	150	165	198	0,00	210.3	321	190	242.9	264	618.1	471.1		7,319.3
7	Drilling (m)	102	09	48.7	78.2	C	58.3	141.7	52.2	93	84	452.1	291.1		3,203.4
	RC Pre- Collar (m)	120	06	116.3	119.8		120	179.3	137.8	149.9	180	166	180		4,115.9
-	- N	-65	70	-70	-70	1	0/-	-65	-70	-65	-70	-70	-70	ì	
	GRID_AZI	270	270	270	270	9	270	270	270	270	270	270	270		
	GRID1_ N	4600	4600	4600	4700		4700	4700	4700	4795	4795	4200	4400		
,	GRID1 _E	5405	5185	5295	5245		5360	5480	5150	5230	5330	5660	5690		
	HOLE_ID	PMD132	PMD133	PMD134	PMD135		PMD136	PMD137	PMD138	PMD139	PMD140	ST CMO	PMD142		TOTAL

φ

